skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yaganapu, Avinash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Weakly Supervised Semantic Segmentation (WSSS) provides efficient solutions for semantic image segmentation using image-level annotations. WSSS requires no pixel-level labeling that Fully Supervised Semantic Segmentation (FSSS) does, which is time-consuming and label-intensive. Most WSSS approaches have leveraged Class Activation Maps (CAM) or Self-Attention (SA) to generate pseudo pixel-level annotations to perform semantic segmentation tasks coupled with fully supervised approaches (e.g., Fully Convolutional Network). However, those approaches often provides incomplete supervision that mainly includes discriminative regions from the last convolutional layer. They may fail to capture regions of low- or intermediate-level features that may not be present in the last convolutional layer. To address the issue, we proposed a novel Multi-layered Self-Attention (Multi-SA) method that applies a self-attention module to multiple convolutional layers, and then stack feature maps from the self-attention layers to generate pseudo pixel-level annotations. We demonstrated that integrated feature maps from multiple self-attention layers produce higher coverage in semantic segmentation than using only the last convolutional layer through intensive experiments using standard benchmark datasets. 
    more » « less